# Close Coupled Cooling for Datacentres

Dr Fathi Tarada Mosen Ltd

fathi.tarada@mosenltd.com www.mosenltd.com

### Agenda

- Increasing Power Densities
- Raised Floor Limitations
- Hot and Cold Aisle Enclosures
- Close Coupled Cooling (CCC)
- Design Application Oliver's Yard



### Agenda

- Increasing Power Densities
- Raised Floor Limitations
- Hot and Cold Aisle Enclosures
- Close Coupled Cooling (CCC)
- Design Application Oliver's Yard



### Recent evolution of datacentre design

### 1970 - 1990

- Monolithic custom designed rooms
- Datacentre information is processed in batches
- Raised floor cooling systems
- Unable to scale without disruption
- Low density (< 450 W/m²)</li>

### 1990 - 2010

- Information is processed in real time
- Mainframes replaced by servers
- Datacentre demands high power (>1500 W/m²)





Room design power density is continuing to increase.



### Increasing rack density loads





### Rack power density has increased 10x

- 2003 < 1.7 kW average per rack</li>
- 2006 ~ 5.0 kW average per rack
- 2009 ~ 6 kW average per rack
- 2010 ~ 20 kW per rack peak loads

Peak rack densities will continue to increase.



### IT server air requirements

- 42U rack
- 250 W per server is 10.5 kW
- requires 790 l/s of air

- 42U rack
- 3 blade chassis is ~12 kW
- requires 590 l/s of air





Temperature rise and air volume varies with server type



### Impact on IT Equipment Power







- 17°C to 38°C fan power is constant
- Component temp tracks inlet temp over range
- Maintains almost constant component temp

- < 23°C fan power is constant, > 24°C increases
- Component temperature tracks inlet temp
- Maintains constant component temp
- Fan power 11 W at 23°C to >60 W at 35°C
- Increased inlet temp does not effect reliability

Total fan power (IT + facilities) may go up with warmer temperatures



### Agenda

- Increasing Power Densities
- Raised Floor Limitations
- Hot and Cold Aisle Enclosures
- Close Coupled Cooling (CCC)
- Design Application Oliver's Yard



### Cooling Designs - Perimeter CRAC



### **Design Concepts**

- · CRACs in room or mechanical corridor
- · Ceiling void return air plenum
- Open room return air
- Supply air under floor

### **Advantages**

- · Widely used for 40 years
- Large design base experience
- Low CRAC CapEx
- Large vendor base

### **Disadvantages**

- Limited density approx 4-5 kW/rack
- Less predictable performance
- Difficult to scale
- Room dimensions critical

Floor depth, air leakage, room dimensions limit predictable cooling performance



### Air distribution issues



Uniform air distribution is difficult in large rooms



### Agenda

- Increasing Power Densities
- Raised Floor Limitations
- Hot and Cold Aisle Enclosures
- Close Coupled Cooling (CCC)
- Design Application Oliver's Yard



### Recirculation of hot air

### Two issues: Heat recirculation at row level and rack level

# Rack Level 32 °C 27 °C 23 °C 23 °C 23 °C 23 °C 22 °C 22 °C 21 °C 21 °C 21 °C 21 °C 22 °C 21 °C

Blanking panels stop heat recirculation in the rack.

### **Row Level**



Cold aisle enclosure prevents heat recirculation in the row.

Enclosures stop recirculation of heat, allow full use of rack space



### Raised floor cooling with Cold Aisle Enclosure



### **CAE with CRAC Supply Air**

- Flooded cold aisle supplied from downflow CRACs
- Eliminates hot air recirculation
- Actual cooling capacity limited by finite volume of air under floor

Eliminates hot aisle air recirculation but can cause hot spots elsewhere



### No Raised floor for cool air distribution







- Horizontal air distribution
- Piping protection on slab floor
- Solves raised floor air problems
- Reduced installation time
- Reduced cost

Add power and cooling capacity as you add computing power



# The infrastructure paradigm shift

### **Room Level**



Small Server Rooms
32kW IT load
40kW N+1

Increased Free Cooling
79% less fan power used
49% less floor space
38% fewer racks
No raised floor required
No ceiling height restriction

### **Rack Level**



Less Space, Less cost, Lower CO<sub>2</sub> Emissions and much greater flexibility



# The infrastructure paradigm shift



Less Space, Less cost, Lower Emissions and much greater flexibility



### Cold aisle enclosure with CCC

### **Cold Aisle Enclosure**



- No raised floor required
- Ceiling height not an issue
- Redundancy at row level
- Eliminates warm air recirculation
- Cooling units can be fully or semi recessed

### **BUT**

Mixed return air to CCC unit

Predictable air distribution with close coupled cooling in the rack



### Hot aisle enclosure with CCC

### **Hot Aisle Enclosure**



- No raised floor required
- Ceiling height not an issue
- Redundancy at row level
- Eliminates warm air recirculation
- Cooling units can be fully or semi recessed

### **AND**

- Maximises coil capacity
- Reduces chiller power
- Increases free cooling opportunity

Heat removal at the source



# Enclosed high density zones





Zones can be replicated for consistent predictable performance



### Improved cooling capacity with HAE



Increased cooling capacity with warmer return air



### The high density advantage



160 kW total IT load
Raised floor not required
Increased server density
88% less fan power used
65% fewer racks
69% less space



Perimeter CRAC 40kW



Same cooling capacity50% lower fan power52% smaller footprint



**Reduces CapEx and OpEx** 







- Same sever load, fewer racks
- Less first cost for cooling units
- Less floor space

For Concurrent Maintenance: Downflow CRACs N+1 = 8; CCC N+1 = 4







- Twice the server load
- Half the floor space

Same number of cooling units for twice the IT load





- No scalability with CRACs
- Difficult to exceed average density



- Zones can be replicated
- High peak density anywhere in row

**CCC** is highly scalable





Limited to initial design load



- 4 times the server power
- Peak load in any rack
- Fast dynamic response

CCC reduces first cost and allows future growh



### Agenda

- Increasing Power Densities
- Raised Floor Limitations
- Hot and Cold Aisle Enclosures
- Close Coupled Cooling (CCC)
- Design Application Oliver's Yard



### **CCC Solutions**















# Single row fully enclosed



**LCP** cooling unit



# **CCC Solutions**















# **XD Pumped Refrigerant Systems**





# CRV







# **Close Coupled Cooling Solutions**















### Individual sealed racks





# Rear Door Heat Exchangers





# Delta-T rack mounted cooling



**T25** 





T25





Slides in like a server



# Delta-T fully enclosed fan

Flow paths out of the fully recessed fan.



Increased fan power needed in fully recessed position



### Delta-T semi-recessed fan

Removal of cabinet side panels allows natural radial air discharge and lower fan power.



All air flow becomes radial with fan wheel outside of rack



## Agenda

- Increasing Power Densities
- Raised Floor Limitations
- Hot and Cold Aisle Enclosures
- Close Coupled Cooling (CCC)
- Design Application Oliver's Yard



# **Room Configuration**

### **Row Layout**









### Objects Modelled in CFD

- Objects modelled:
- Racks (standard 3 kW racks in Rows A/B, C/D & higher rated 3.9 kW racks in Rows E/F, G/H)
- Weiss Technik downflow units
- 8 number Power Distribution Units STS-PC-400-E454P (each producing 2 kW of waste heat)
- Underfloor cable racks
- Ventilated floor tiles



## Normal Operation N+1 Units



# Failed Controls & Unit for N Units Running



# Failed Controls & Unit for N Units Running





### Case with One CRAC Unit Failed





# Failed Controls & Unit for N Units Running



## Failed Controls & Unit for N Units Running





### Summary

- Increasing Power Densities
- Raised Floor Limitations
- Hot and Cold Aisle Enclosures
- Close Coupled Cooling (CCC)
- Design Application Oliver's Yard

