Sustainability and Safety in Tunnels Dr Fathi Tarada

Mosen Ltd

Motivation

- Tunnel ventilation and lighting can consume substantial power, as well as requiring expensive structural space.
- Is this consistent with sustainability?

Agenda

- 1. Sustainability concepts
- 2. Tunnel life cycle
- 3. Tunnel ventilation requirements
- 4. Tunnel lighting requirements
- 5. Technical innovations
- 6. Unnecessary installations
- 7. Future sustainability

1. Sustainability Concepts

Brundtland Report to UN, 1987

Sustainable development = "the kind of development that meets the needs of the present without compromising the ability of future generations to meet their own needs"

The Three Pillars of Sustainability

Social: meeting needs in terms of health, education, housing, employment, etc. Environmental: preserving species, natural resources and energy resources

Economic: creating wealth and improving living standards

2. Tunnel life cycle

Tunnel Project Phases

Project phase	Estimated impact	
Design / study (3-10 years)	60 – 80 per cent	
Build / construction (2-3 years)	10 – 30 per cent	
Operate / tunnel lifespan (5-20 yea	rs)10 – 30 per cent	

Tunnel Life-Cycle

3. Tunnel ventilation requirements

Is tunnel ventilation required?

- Short tunnels:
 - $\leq 500m$ (EU Directive on Road Tunnel Safety)
 - < 300m (NFPA 502 road tunnels)</p>
 - < 300m (NFPA 130 rail tunnels)</p>
- Natural air movements due to meteorological effects
- Piston effect of moving traffic

Long tunnels

Mechanical tunnel ventilation depends on:

- Tunnel length
- Vertical gradient
- Traffic flow
- Vehicle mix
- Number of lanes
- Risk of fires

Piston Effect

- Many road tunnels less than 3km do not require any mechanical ventilation to preserve air quality
- Possible exception of rush-hour traffic

Mersey Kingsway and Queensway Tunnels

Kingsway: unidirectional traffic, two bores, 2.4 km

Queensway: bidirectional traffic, single bore, 3.24 km

Use of Piston Effect

- Substantial savings in Queensway and Kingsway Tunnels by switching off mechanical ventilation
- Tidal flow in Queensway Tunnel during rush hours
- Air quality maintained by piston effect

Smoke Ventilation

- Life safety: compliance to codes or via risk assessment
- Determining criterion for mechanical ventilation is smoke control, not air quality
- Reduce power consumption by switching on all available fans at lower speed, and by including "redundant" fans in operating cycle

External Air Quality

- Tunnels do not create any emissions rather, they contain and redirect emissions to outlet portals and ventilation stacks.
- The discharge of vitiated air can impact on the health of residents living close to the exit portals.
- Polluted air can be extracted up through exhaust stacks and dispersed.

Exit Portal Stack

Power Consumption for "Zero Portal Emissions" (Australia)

Project phase	Electricity consumption (MWh/annum)	Total (two way) tunnel length (km)	Traffic (vehicles per day)	MWh/km per annum
Eastern Distributor Tunnel	4,400	3.2	110,000	1,375
Lane Cove Tunnel	15,400	7.2	70,000	2,139
CityLink Tunnel (Mel- bourne	21,500	5	100,000	4,300
M5 East Tunnel	54,000	8	100,000	6,750

The M5 East ventilation system energy use is equivalent to that of 7,400 households – is that sustainable?

Improved Power Consumption

- Trials involving switching off the portal extract systems for the CityLink and Lane Cove Tunnels overnight and during low traffic conditions have been undertaken.
- Little impact on the ambient air quality levels reported.

4. Tunnel lighting requirements

Tunnel Lighting

- Dominant source of power consumption for short tunnels (up to 1 km long)
- Important for driver visibility
- Essential for evacuation and emergency services in case of emergencies

Tunnel Lighting Zones

Opportunities for Energy Savings

- 1. Lighting stages management (dimming)
- 2. Closer to to CIE 88 curve
- 3. Adjust lighting levels to traffic speed
- 4. Control systems
- 5. LED technology

Typical Energy Savings

- Compared to high-pressure sodium luminaires in entrance zone + fluorescent lamps
- Hybrid installations: 15 to 20% savings
- 100% LED installations: 20 to 25% savings

5. Technical innovations

Low-Speed Fans

- Large diameter (3-5 m)
- Low speeds (less than 200 rpm)
- No sound attenuation required
- 75% reduction in power consumption

Spier Tunnel, Switzerland

Low-Speed Fans - Drawbacks

- Less static pressure generated
- More susceptible to piston & wind effects
- No operational experience

MoJet

- Energy-efficient jetfan
- Uses shaped nozzles to reduce the Coanda effect
- Up to 25% increase in energy efficiency

Conventional Jetfan

Jet sticks to tunnel soffit and wall, creating friction and losing thrust

Longitudinal Velocity (m/s)

MoJet

Longitudinal Velocity (m/s)

MoJet Installations

- Grimstad Port Tunnel, Norway
- Byfjord Tunnel, Norway
- Mastrafjord Tunnel, Norway
- Hvidovre Tunnel, Denmark

6. Unnecessary installations

Air Filtration Systems

- Filtration plant for NOx and particles within the Opera tunnel in Oslo + 6 other tunnels in Norway deactivated
- Excessive energy consumption, large maintenance and operation costs and low efficiency
- Filtration plants in M30 tunnels in Madrid hardly used, due to low vehicular pollution
- Air cleaning in Chiyoda and Yamate tunnels in Tokyo still operational

7. Future sustainability

- Consider social, economic and environmental impacts
- Over tunnel life cycle
- Holistic strategy
- Consistency with life safety, asset protection and operational continuity
- Clear targets and plans

Conclusions

- Sustainable designs can save costs and improve the environment – but a longterm horizon is required
- Emphasis on design and operation
- Challenge for innovation

