Tunnel Fire Suppression with Low Pressure Mist

Dr Fathi Tarada Mosen Ltd

LOW PRESSURE WATERMIST

Utilises the best from 2 technologies

Objective

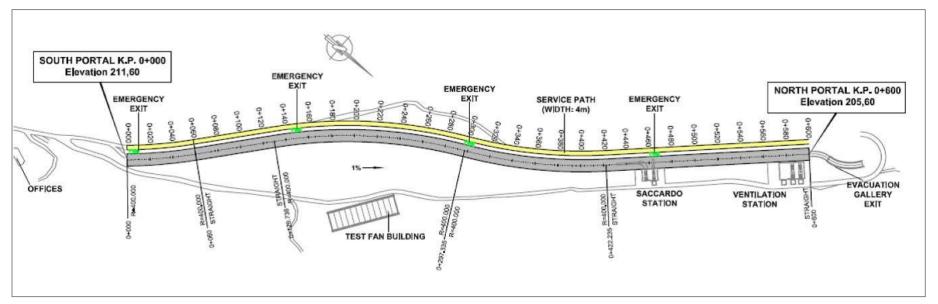
 The objective of the tests was to evaluate the performance of Model TUNPROTEC[®] with regard to fire, smoke and structural temperature control and tenability conditions in simulated HGVs 250 MW fires in a full scale tunnel with longitudinal ventilation with high ventilation rates 5 m/s

The test set-up

- Efectis designed a test setup for VID Fire-Kill by considering the requirements and specifications in NFPA 502:2017
- Previous tests carried out by Efectis in which a deluge sprinkler system was tested with a similar, but smaller fire load and with a lower ventilation velocity
- Measurement of key parameters for life safety and structural fire protection

The test facility

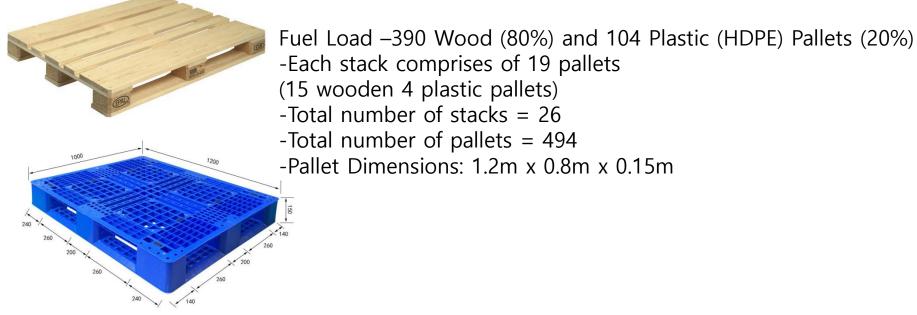
"SAN PEDRO DE ANES" FULL SCALE TUNNEL FIRE TEST


TEST FACILITY

The tests were conducted in the TST tunnel facility located close to Oviedo and Gijon in the Northwest of Spain. The tunnel is used for fire tests and fire brigade training and is made of reinforced concrete. The tunnel is owned by Applus Laboratories.

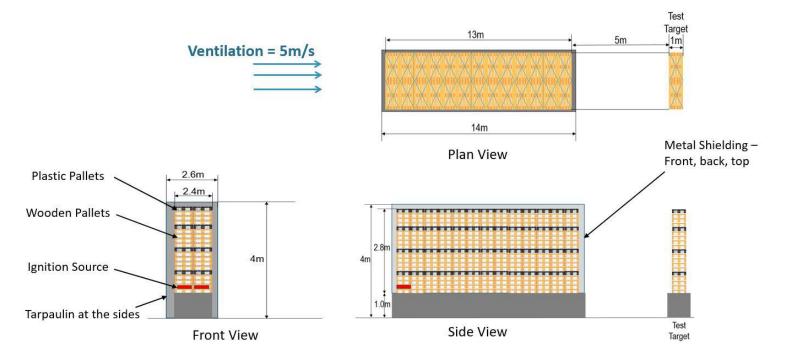
The test facility

"SAN PEDRO DE ANES" FULL SCALE TUNNEL FIRE TEST

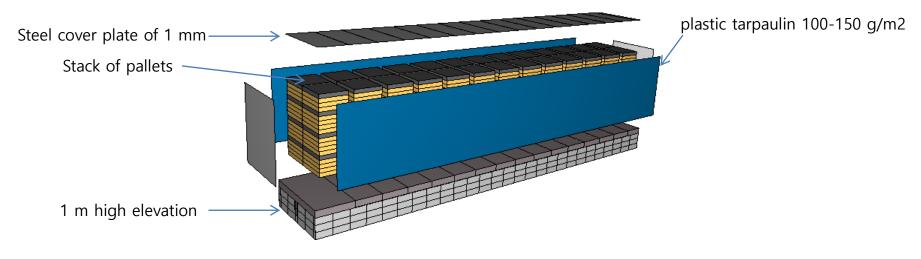

TEST FACILITY

The south portal of the test tunnel and office building/control room on the right-hand side. The length of the test tunnel is 600 m with a curvature as displayed here.

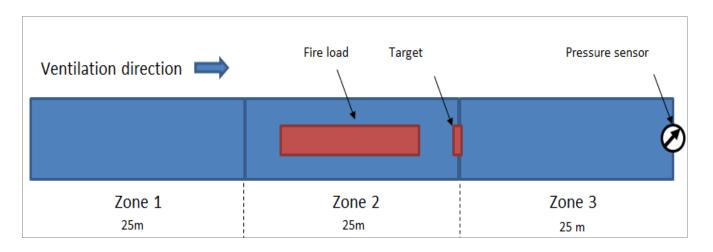
Test set-up


"FIRE LOAD" A SIMULATED HEAVY GOODS VEHICLE

Test set-up


"FUEL PACKAGE" A SIMULATED HEAVY GOODS VEHICLE

"FUEL PACKAGE" A SIMULATED HEAVY GOODS VEHICLE

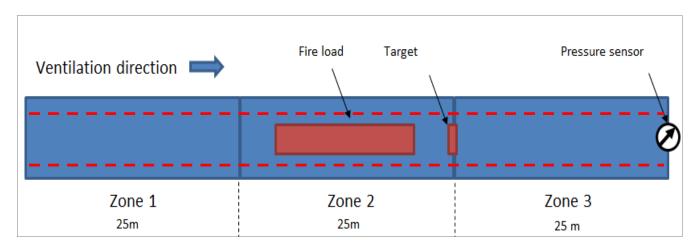


Covers around the pallets; Grey: Metal sheet, Blue: Tarpaulin.

"FIRE LOAD" A SIMULATED HEAVY GOODS VEHICLE

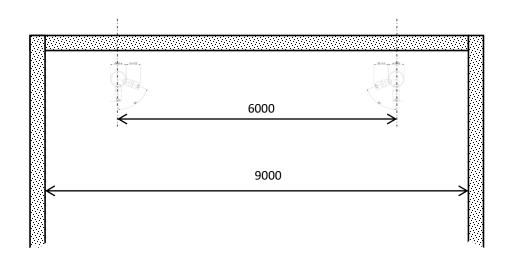
Zone alignment in the tunnel with regard to fuel load. (not scaled)

Results full scale fire test (May 2018) High ventilation velocities


FIXED FIRE FIGHTING SYSTEM

DESCRIPTION			
Zone 1, 2 and 3	TUNPROTEC® Water mist system Length of each zone: 25 m 2 longitudinal pipeline – 6 m appart, Nozzles at every 0.33 m K-factor: 72,1 for 6 m long pipe Total K-factor of each zone: 300		
	Nozzle type	Both sides (70°)	K-factor: 4.0
		Downwards	K-factor: 2.0
	Water density	5 mm/min./m2 for a 12 m wide tunnel	
Fuel	Fuel load's centre point was at the centre of Zone 2. 5 mm gap between top metal sheets on the fuel load.		

FULL SCALE TUNNEL FIRE TEST 24TH OF APRIL 2018


Two nozzle lines TUNPROTEC model 5MS (not scaled)

Test set-up

"FULL SCALE TUNNEL FIRE TEST 24TH OF APRIL 2018"

	Ø35x1.5 mm	
N-Pipe Dimensions:	Ø42x1.5 mm	
re-Pipe Dimensions.	Ø54x1.5 mm	
N122 // 2010	054X1.5 mm	
Maximum Operation Pressure:	16 bar	
Minimum Operation Pressure:	10 bar	
Pressure Class:	PN16	
N-Pipe Length:	6 m	
N-Pipe Connections:	Open end for press-fitting	
Maximum Installation Height:	8 m	
Maximum Ventilation during Operation:	5 m/s	
Spacing pr. Pipe:	Length: 6 m Width: 6 m	
K-factor: (for 6 m pipe)	60 (metric)	
Nominal Flow: (at 10 bar)	190 l/min	
Nominal Water Density: (for 6 m wide tunnel)	5.3 mm/min	
Material - Nozzle:	AISI 316L, EN1.4404	
Material - N-Pipe:	AISI 316L, EN1.4404	

FULL SCALE TUNNEL FIRE TEST APRIL 2018 - SPAIN

TIME	REMARKS
00:00	Ignition
02:05	Detection
06:10	Water activation
36:00	No pallets fell during the test
36:10	Test ended

TENABILITY - GRAPHS

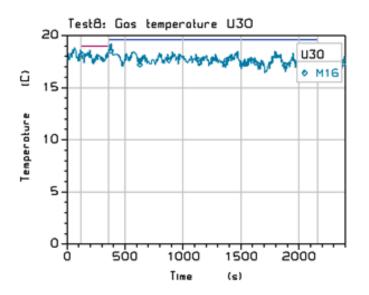
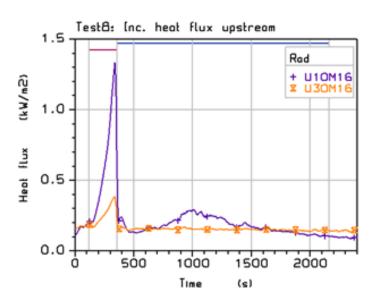
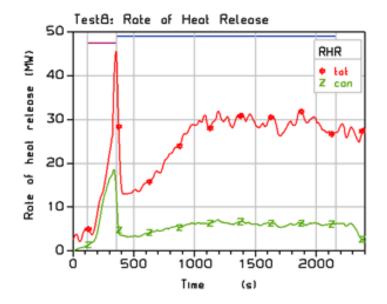
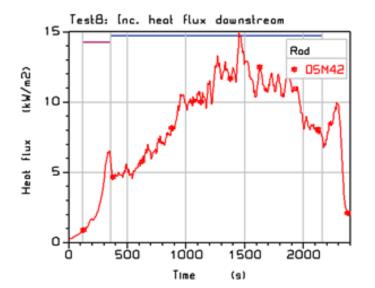
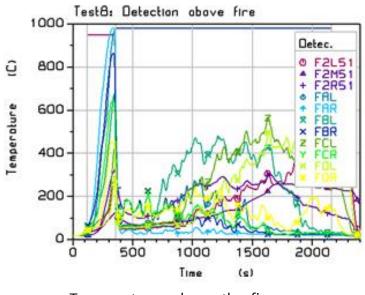


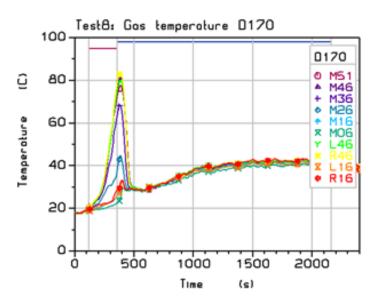
Figure A: Gas temperatures at upstream 30 m

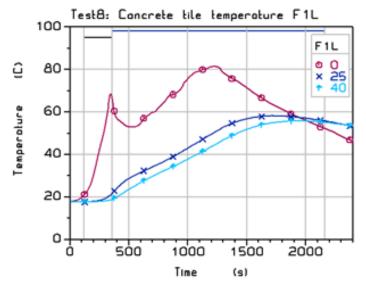

Figure B: High heat flux values for upstream 10 & 30 m

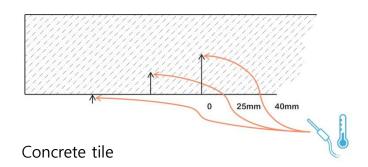
STRUCTURAL PROTECTION - HRR & HEAT FLUX


HRR values


Heat flux values - no fire spread was observed

STRUCTURAL PROTECTION - TEMPERATURES

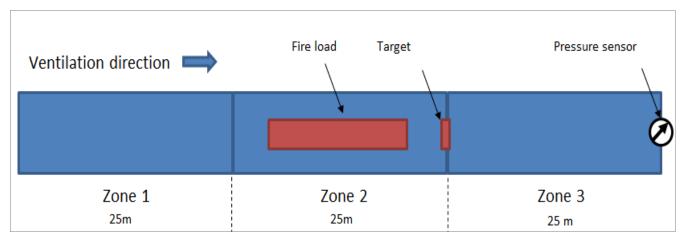

Temperatures above the fire


Temperatures immediately dropped when watermist activated

STRUCTURAL PROTECTION - CONCRETE TILES

Temperature at the surface 0, at 25 mm & 40 mm

ΤΟΡΙΟ	MEASURED	CRITERIA
Max heat release rate	See figure 1F1 HRR	50 MW
Max. convective heat release rate	7 MW	50 MW
Fire spread to target pallets	No	No fire spread allowed
Max ceiling surface temperature	82 °C (Tile at F1)	380 ℃
Max temperature steel reinforcement in concrete tile	58 °C (Tile at F1)	250 °C
Tenability at upstream 30 m	 Beacons remained visible Max temp: 20 °C Max heat flux: 0,15 kW/m² CO remained 0 ppm 	 Visibility Temperature (limit: 60 °C) Heat Flux (limit: 2.5 kW/m²) Carbon monoxide
Detection	60 °C	60 ℃
Min. activation time of water system	04:05 after detection at 60 ℃	04:00 [min:sec] after detection at 60 °C
Initial ventilation speed	4,9 m/s	5 m/s (±25%) = (3.75-6.25 m/s)
Water density	5,0 mm/min./m2	5,0 mm/min./m2 for a 12 m tunnel

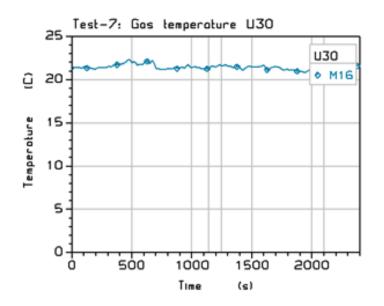


Results full scale fire test (October 2018)"Free-burn"

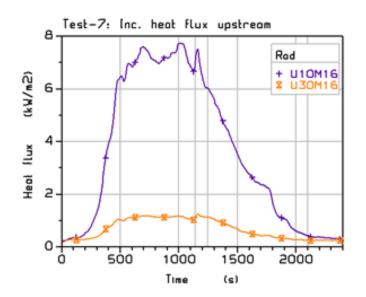
Set-up

FULL SCALE TUNNEL FIRE TEST APRIL 2018 - SPAIN

Free burn set-up (not to scale)



Observations


TIME	REMARKS	GENERAL OBSERVATIONS	
00:00	Ignition	Visibility at U30	Visibility was maintained throughout the test
03:17	Detection	CO at U30	0 ppm throughout the test
08:30	Tunnel ventilation speed is too low		o ppm throughout the test
09:00	Back-layering up to U5 observed. Extra two jet fans activated	Remaining unburnt pallet after the test	Approximately 95 % of the fuel burnt
09:00	1 pallet falling down	Target	Completely burnt
11:30	Additional one jet fan activated		
12:00	Velocity measurements at D170 stopped working		
19:00	Steel frame collapsing		
20:45	Velocity measurement at D170 stopped working		
20:50	One fan deactivated		
28:40	Minor/initial intervention by fire brigade		
31:10	Full/additional intervention of fire brigade		
33:50	Test ended		

TENABILITY - GRAPHS

Gas temperatures at upstream 30 m

High heat flux values for upstream 10 & 30 m

STRUCTURAL PROTECTION - GRAPHS HRR - HEAT FLUX

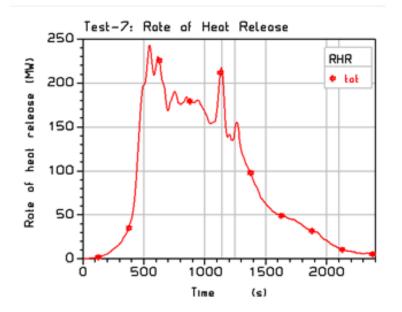


Figure 1F: HRR went from 0 – 250 MW within 8 minutes

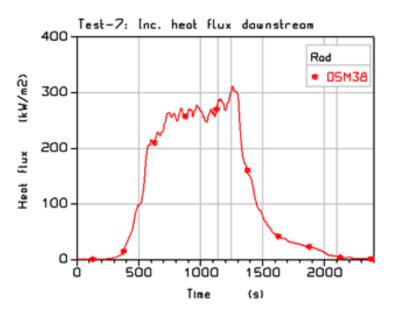
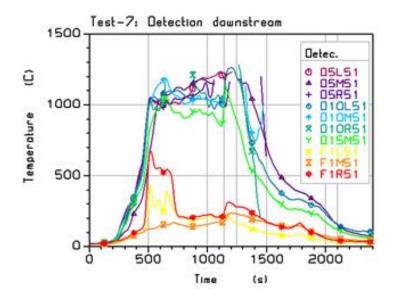
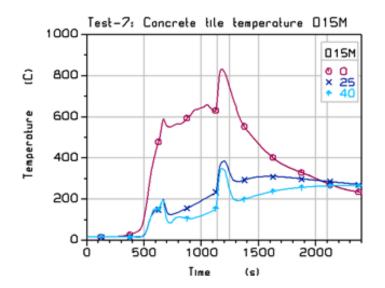
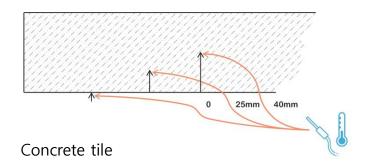



Figure 2F: High heat flux values initiated fire spread downstream

STRUCTURAL PROTECTION - GRAPHS TEMPERATURES

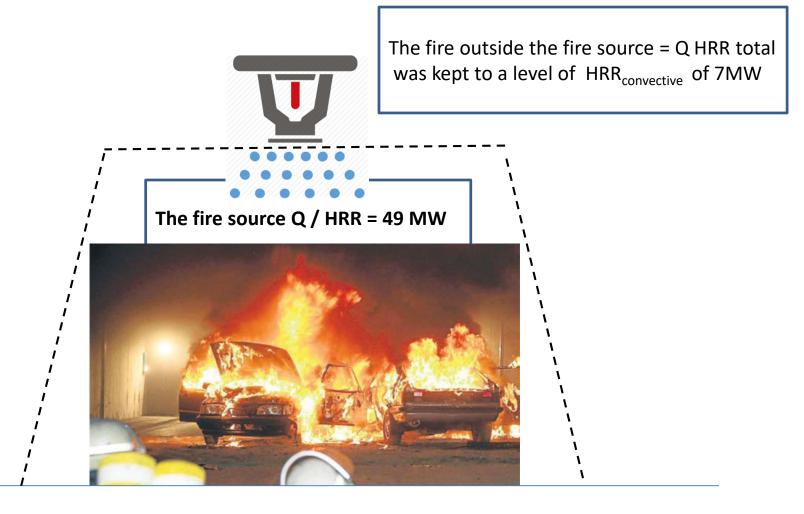

High and rapid temperature rises observed above and near the fire



High temperatures even at 170 m downstream

STRUCTURAL PROTECTION - CONCRETE TILES

Temperature at the surface 0, at 25 mm & 40 mm


ТОРІС	MEASURED	CRITERIA
Max heat release rate	243 MW	50 MW
Fire spread to target pallets	Yes (completely burnt)	No fire spread allowed
Max ceiling surface temperature	832 °C (Tile at D15)	380 ℃
Max temperature steel reinforcement in concrete tile	385 °C (Tile at D15)	250 °C
Tenability at upstream 30 m	 Beacons remained visible Max temp: 25 °C Max heat flux: 1.3 kW/m² CO remained 0 ppm 	 Visibility Temperature (limit: 60 °C) Heat Flux (limit: 2.5 kW/m²) Carbon monoxide
Detection	60 °C	60 °C
Max. number of suppression zone & length	N/A	N/A
Initial ventilation speed	5,0 m/s	5 m/s (±25%) = (3.75-6.25 m/s)

How to utilise results obtained?

Convective Heat Release Rate

COMPENSATING EFFECTS FOR INSTALLING A FIXED FIRE FIGHTING SYSTEM

Ventilation & critical velocity

Thanks to the significant smoke reduction and cooling of smoke:

- The number or capacity of jet fans can be substantially reduced.
- In certain cases longitudinal ventilation can be used instead of planned semi-transverse or transverse ventilation systems, or smoke extraction systems.

COMPENSATING EFFECTS FOR INSTALLING A FIXED FIRE FIGHTING SYSTEM

Structural protection

Due to the cooling effect of the Fixed Fire Fighting System and its ability to absorb heat from a tunnel fire, makes it possible to:

- Eliminate or reduce planned passive fire protection
- Allow for lower fire rated components within the tunnel

COMPENSATING EFFECTS FOR INSTALLING A FIXED FIRE FIGHTING SYSTEM

Improved risk assessments

Due to the excellent cooling effect of the Fixed Fire Fighting System and its ability to absorb heat from a tunnel fire:

- Improve occupant tenability
- Allow better evacuation procedures
- Assist fire brigade intervention

Conclusions

- Low-pressure mist systems can combine many of the advantages of low- and highpressure fire suppression
- Now accepted by Land Transport Authority of Singapore on their two CTE tunnels
- Also accepted in Europe, e.g.
 Nordhavnsvejens Tunnel, Copenhagen

www.mosen.global

